Time Reversal in elastodynamics and applications to Structural Health Monitoring

Christos G. Panagiotopoulos, Yiannis Petromichelakis and Chrysoula Tsogka

Institute of Applied \& Computational Mathematics
Foundation for Research and Technology Hellas, Heraklion, Greece
Department of Mathematics and Applied Mathematics
University of Crete, Heraklion, Greece
e-mail: tsogka@uoc.gr

COMPDYN 2015

Table of contents

(1) Introduction
(2) The time reversal process
(3) Damage Identification
(4) Numerical implementation
(5) Conclusions

Table of contents

(1) Introduction
(2) The time reversal process
(3) Damage Identification

4 Numerical implementation
(5) Conclusions

Detection and Localization of Damage

- Important in SHM systems
- Response recordings at a number of sensors to monitor structural integrity ${ }^{1}$
- Detection : comparison of recordings to a reference (undamaged) state
- Localization: Inverse Problem usually ill-posed
- Solution: Time-Reversal (TR) computational tool introduced by Fink et. al. ${ }^{2}$
- Achieves refocusing of the wave on the source
- Sending back the recorded signals but reversed in time

1. GE Stavroulakis, (2000) Inverse and crack identification problems in engineering mechanics
2. Fink et. al., (2000) Time-reversed acoustics

Time Reversal and applications

- TR is a physical process
- It exploits the time reversibility (based on spatial reciprocity and time reversal invariance) of linear wave equations
- Robust and Simple technique for source localization
- Has been applied in Acoustics ${ }^{3}$, Elastodynamics ${ }^{4}$, Electromagnetism, Hydrodynamics etc.
- Finds several applications in medicine, telecommunications, underwater acoustics, seismology, engineering structures, etc.
- Example of source localization in acoustic medium here

[^0]
Time Reversal

- Two step approach :
- Forward step : waves emitted from some source, travel through the medium and the response is recorded by receivers
- Backward step : the recorded signals are time reversed and retransmitted
- Ideal Conditions :
- receivers over the entire domain or it's entire boundary
- recordings of the field variable and its derivatives
- recordings during the whole experiment time T
- absence of noise
- Difficulty : the refocusing time is unknown
- Procedure for the assessment of the refocusing time (stopping criterion)

TR for scatterer localization

- Scatterers act as secondary sources
- Emit at every passage of the original pulse
- Multiple in time sources
- Knowledge of the response in the reference (healthy) configuration
- Scattered field ($p^{s c a t}=p^{t o t}-p^{r e f}$) results better refocusing
- Example of defect localization in acoustic medium

```here
```


In the present work

- Description of the numerical implementation of TR
- Elastic medium
- Bounded domain Ω
- Excitation produced by N_{s} point sources forming $\Omega_{s} \subset \Omega$
- Response recordings at N_{r} receivers forming $\Omega_{r} \subset \Omega$
- $\Omega_{r} \cap \Omega_{s}=\emptyset \quad$ or $\quad \Omega_{r} \cap \Omega_{s} \neq \emptyset \quad$ or $\quad \underline{\Omega_{r}=\Omega_{s}}$
- Sensors may form an array or be distributed
- DORT method ${ }^{5}, 6$ for selective refocusing on multiple defect using the SVD of the Impulse Response Matrix

5. G Derveaux, G Papanicolaou and C Tsogka, (2007) Time reversal imaging for sensor networks with optimal compensation in time
6. E Barbieri and M Meo, (2010) Time reversal DORT method applied to nonlinear elastic wave scattering

Table of contents

(1) Introduction
(2) The time reversal process

3 Damage Identification

4 Numerical implementation
(5) Conclusions

Forward step

- Simulated Numerically using a mixed finite element formulation ${ }^{7}$
- Wave propagation model

Displacement - Stress (second order)

$$
\begin{aligned}
\rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}-\operatorname{div} \sigma & =\delta\left(\boldsymbol{x}-\boldsymbol{x}_{s}\right) f(t) \boldsymbol{e}_{i} \\
\sigma & =C: \varepsilon
\end{aligned}
$$

strain - displacement relationship

$$
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

$$
\dot{\varepsilon}_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)
$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions

7. E Bécache, P Joly and C Tsogka (2002) A new family of mixed finite elements for the linear elastodynamic problem.

Backward step

- Always performed numerically in SHM applications
- Three alternative forms
a) imposed displacements at all \boldsymbol{x}_{r}
b) appropriate initial conditions
c) sensors acting as sources introducing right hand side loading terms

$$
\begin{aligned}
\rho \frac{\partial \tilde{\boldsymbol{v}}}{\partial t}-\operatorname{div} \tilde{\sigma} & =\sum_{q=1}^{N_{r}} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{q}\right) \boldsymbol{v}\left(\boldsymbol{x}_{q}, T-t\right), & & (\boldsymbol{x}, t) \in \Omega \times(0, T] \\
A: \frac{\partial \tilde{\sigma}}{\partial t}-\dot{\tilde{\varepsilon}} & =0, & & (\boldsymbol{x}, t) \in \Omega \times(0, T] \\
\tilde{\boldsymbol{v}}(\boldsymbol{x}, t) & =0, & & (\boldsymbol{x}, t) \in \partial \Omega \times(0, T] \\
\tilde{\boldsymbol{v}}(\boldsymbol{x}, 0) & =0 & \text { and } & \tilde{\sigma}(\boldsymbol{x}, 0)=0,
\end{aligned}
$$

Table of contents

(1) Introduction

(2) The time reversal process
(3) Damage Identification

4 Numerical implementation
(5) Conclusions

Impulse Response Matrix (IRM)

- In every time step of the forward propagation

Multiple damaged areas

- DORT method - imaging procedure for selective refocusing on different targets
- Fourier transform of the IRM $P(t)$ to obtain $\hat{P}(\omega)$
- Singular Value Decomposition (SVD) of $\hat{P}(\omega)$ according to

$$
\hat{P}(\omega)=U(\omega) S(\omega) V^{*}(\omega)
$$

- Projection of each column $\hat{P}^{(l)}$ of the transformed IRM on the k-th singular vector as

$$
\hat{P}_{k}^{(p)}(\omega)=\left(U_{k}^{*}(\omega) \hat{P}^{(l)}(\omega)\right) V_{k}(\omega)
$$

- Inverse Fourier transform of $\hat{P}_{k}^{(p)}(\omega)$ to obtain $P_{k}^{(p)}(t)$
- Back-propagation of $P_{k}^{(p)}(t)$ to achieve refocusing on one specific defect

Stopping Criterion

- Refocusing at the defect during the backward propagation
- The refocusing time is not a priori known
- Stopping criteria based on the minimization of some norm of appropriate field quantities
- Shannon entropy
- Bounded variation function of a field variable
- Mathematical energy
- Total energy

$$
\mathcal{E}(t)=\frac{1}{2}(A \sigma, \sigma)+\frac{1}{2}(\rho v, v)
$$

- Definition of the discrete energy density
- Normalization by its maximal value
- Computation of its L^{1} norm

Table of contents

(1) Introduction
(2) The time reversal process

3 Damage Identification

4 Numerical implementation

(5) Conclusions

Numerical example

- Geometry : rectangular domain $\mathrm{L}_{x}=69.037 \mathrm{~mm}$ and $\mathrm{L}_{y}=62.747 \mathrm{~mm}$
- Mesh : 400×400 grid with rectangular elements
- Material : steel with Lamé coefficients $\lambda=96.95 \mathrm{GPa}$ and $\mu=76.17 \mathrm{GPa}$
- Velocities : pressure waves $\mathrm{c}_{p}=5689.9 \mathrm{~m} / \mathrm{s}$ and shear waves $\mathrm{c}_{s}=3145.2$ m / s
- Array of 21 equidistant sensors that act as sources as well
- Two defects : one at $\left(0.6 \mathrm{~L}_{x}, 0.25 \mathrm{~L}_{y}\right)$ of area $0.1 \mathrm{~mm}^{2}$ and second $\left(0.6 \mathrm{~L}_{x}\right.$, $0.75 \mathrm{~L}_{y}$) of area $0.4 \mathrm{~mm}^{2}$
- Damage is considered in the material by the degradation of both Lamé coefficients by 10 \%
- Excitation function : Ricker pulse with central frequency 1 MHz

Results

- Forward step and construction of the IRM
- Back-propagation of the field recorded when the source is on the central array element. Response time-hitory Refocuing
- SVD of the IRM
- Back-propagation of the field recorded when the source is on the central array element after projection on the singular vector corresponding to the
- first singular value

Response time-history

- second singular value

Response time-history

Response time-history

Refocusing
Refocusing

Refocusing

Table of contents

(1) Introduction
(2) The time reversal process

3 Damage Identification

4 Numerical implementation
(5) Conclusions

Summary and Conclusions

- Time reversal for damage localization in elastic bounded media
- Application of the DORT method for selective refocusing
- Choice of an effective stopping criterion (Total energy)
- Absence of notable differences between array and distributed sensor configurations
- Difficulties in the elastic medium due to the two types of waves (pressure and shear) and their conversions
- Difficulties due to the presence of boundaries

Future work

- Extensive investigation of the distributed sensor configuration
- Propose optimal total experiment time
- Application of imaging techniques ${ }^{8}$
- Investigation of the methodology using passive noisy recordings as input data
- Account for dissipation (damping) and dispersion
- Application to structures with complex geometry

8. L Borcea, G Papanicolaou, C Tsogka and J Berryman, (2002) Imaging and time reversal in random media

Source localization

0.471405

Source localization

1.41421

Source localization

2.35702

Source localization

3.29983

Source localization

4.24264

Source localization

5.18545

Source localization

6.12826

Source localization

7.07107

Source localization

Source localization

Source localization

9.89949

Source localization

Source localization

11.7851

Source localization

12.7279

Source localization

13.6707

Source localization

14.6135

Source localization

Source localization

16.4992

Source localization

17.442

Source localization

Source localization

19.3276

Source localization

Source localization

21.2132

Source localization

22.156

Source localization

23.0988

Source localization

24.0416

Source localization

24.9844

Source localization

25.9272

Source localization

26.8701

Source localization

Source localization

28.7557

Source localization

29.6985

Source localization

30.6413

Source localization

31.5841

Source localization

Source localization

33.4697

Source localization

34.4125

Source localization

Source localization

36.2981

Source localization

Source localization

Source localization

39.1266

Source localization

40.0694

Source localization

- Time reverse the recordings and rebroadcast hare

Source localization

0.471405

Source localization

1.41421

Source localization

2.35702

Source localization

3.29983

Source localization

4.24264

Source localization

5.18545

Source localization

6.12826

Source localization

7.07107

Source localization

8.01388

Source localization

8.95669

Source localization

9.89949

Source localization

10.8423

Source localization

11.7851

Source localization

12.7279

Source localization

13.6707

Source localization

14.6135

Source localization

15.5563

Source localization

16.4992

Source localization

17.442

Source localization

18.3848

Source localization

19.3276

Source localization

Source localization

21.2132

Source localization

22.156

Source localization

23.0988

Source localization

24.0416

Source localization

Source localization

25.9272

Source localization

26.8701

Source localization

27.8129

Source localization

28.7557

Source localization

29.6985

Source localization

30.6413

Source localization

31.5841

Source localization

Source localization

33.4697

Source localization

34.4125

Source localization

35.3553

Source localization

36.2981

Source localization

Source localization

38.1838

Source localization

39.1266

Source localization

40.0694

Defect localization - forward step

Total field 0.333333

Scattered field
0.333333

Defect localization - forward step

Total field
1

Scattered field

Defect localization - forward step

Total field
1.66667

Scattered field

Defect localization - forward step

Total field
2.33333

Scattered field

Defect localization - forward step

Total field

3

Scattered field

Defect localization - forward step

Total field
3.66667

Scattered field

Defect localization - forward step

Total field
4.33333

Scattered field

Defect localization - forward step

Total field
5

Scattered field

Defect localization - forward step

Total field
5.66667

Scattered field

Defect localization - forward step

Total field
6.33333

Scattered field

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
7.66667

Scattered field

Defect localization - forward step

Total field
8.33333

Scattered field

Defect localization - forward step

Total field
9

Scattered field

Defect localization - forward step

Total field
9.66667

Scattered field

9.66667

Defect localization - forward step

Total field
10.3333

Scattered field

10.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field

Scattered field

11.6667

Defect localization - forward step

Total field
12.3333

Scattered field

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
13.6667

Scattered field

13.6667

Defect localization - forward step

Total field
14.3333

Scattered field

14.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
15.6667

Scattered field

15.6667

Defect localization - forward step

Total field
16.3333

Scattered field

16.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
17.6667

Scattered field

17.6667

Defect localization - forward step

Total field
18.3333

Scattered field
18.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
19.6667

Scattered field
19.6667

Defect localization - forward step

Total field
20.3333

Scattered field
20.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
21.6667

Scattered field
21.6667

Defect localization - forward step

Total field
22.3333

Scattered field
22.3333

Defect localization - forward step

Total field

23

Scattered field

Defect localization - forward step

Total field
23.6667

Scattered field
23.6667

Defect localization - forward step

Total field
24.3330

Scattered field
24.3333

Defect localization - forward step

Total field
25

Scattered field

Defect localization - forward step

Total field

Scattered field
25.6667

Defect localization - forward step

Total field
26.3333

Scattered field
26.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
27.6667

Scattered field
27.6667

Defect localization - forward step

Total field
23.3333

Scattered field
28.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field
29.6667

Scattered field
29.6667

Defect localization - forward step

Total field
30.3333

Scattered field

30.3333

Defect localization - forward step

Total field

Scattered field

Defect localization - forward step

Total field

Scattered field
31.6667

- End of forward step
- End of forward step
- Time reverse the recordings and rebroadcast

Defect localization - backward step

0.666667

Defect localization - backward step

Defect localization - backward step

2

Defect localization - backward step

2.66667

Defect localization - backward step

Defect localization - backward step

4

Defect localization - backward step

4.66667

Defect localization - backward step

Defect localization - backward step

6

Defect localization - backward step

6.66667

Defect localization - backward step

Defect localization - backward step

8

Defect localization - backward step

8.66667

Defect localization - backward step

Defect localization - backward step

Defect localization - backward step

10.6667

Defect localization - backward step

Defect localization - backward step

Defect localization - backward step

12.6667

Defect localization - backward step

Defect localization - backward step

Defect localization - backward step

14.6667

Defect localization - backward step

Defect localization - backward step

Defect localization - backward step

16.6667

Defect localization - backward step

Defect localization - backward step

Defect localization - backward step

18.6667

Defect localization - backward step

Backward step

$$
\mathrm{t}=7.8173 \mathrm{e}-07
$$

Backward step

$\mathrm{t}=1.5635 \mathrm{e}-06$

Backward step

$\mathrm{t}=2.3452 \mathrm{e}-06$

Backward step

$\mathrm{t}=3.1269 \mathrm{e}-06$

Backward step

$\mathrm{t}=3.9086 \mathrm{e}-06$

Backward step

$\mathrm{t}=4.6904 \mathrm{e}-06$

Backward step

$$
\mathrm{t}=5.4721 \mathrm{e}-06
$$

Backward step

$\mathrm{t}=6.2538 \mathrm{e}-06$

Backward step

$\mathrm{t}=7.0355 \mathrm{e}-06$

Backward step

$$
\mathrm{t}=7.8173 \mathrm{e}-06
$$

Backward step

Backward step

$t=9.3807 e-06$

Backward step

$\mathrm{t}=1.0162 \mathrm{e}-05$

Backward step

$$
\mathrm{t}=1.0944 \mathrm{e}-05
$$

Backward step

$\mathrm{t}=1.1726 \mathrm{e}-05$

Backward step

$$
\mathrm{t}=1.2508 \mathrm{e}-05
$$

Backward step

$$
\mathrm{t}=1.3289 \mathrm{e}-05
$$

Backward step

$$
\mathrm{t}=1.4071 \mathrm{e}-05
$$

Backward step

$$
\mathrm{t}=1.4853 \mathrm{e}-05
$$

Backward step

$\mathrm{t}=1.5635 \mathrm{e}-05$

Backward step

$$
\mathrm{t}=1.6416 \mathrm{e}-05
$$

Backward step

$$
\mathrm{t}=1.7198 \mathrm{e}-05
$$

Backward step

$$
\mathrm{t}=1.798 \mathrm{e}-05
$$

Backward step

$$
\mathrm{t}=1.8761 \mathrm{e}-05
$$

Backward step

$\mathrm{t}=1.9543 \mathrm{e}-05$

$\mathcal{E}(t)=\frac{1}{2}(A \sigma, \sigma)+\frac{1}{2}(\rho v, v)$

$t=1.4853 \mathrm{e}-05$

$$
\mathcal{I}(\mathbf{y})=\int_{0}^{T} \mathcal{E}(\mathbf{y}, t) \mathrm{d} t, \quad \mathbf{y} \in \Omega
$$

Backward step - first singular value

Backward step - first singular value

$\mathrm{t}=1.1726 \mathrm{e}-06$

Backward step - first singular value

$\mathrm{t}=1.9543 \mathrm{e}-06$

Backward step - first singular value

Backward step - first singular value

$\mathrm{t}=3.5178 \mathrm{e}-06$

Backward step - first singular value

$\mathrm{t}=4.2995 \mathrm{e}-06$

Backward step - first singular value

$\mathrm{t}=5.0812 \mathrm{e}-06$

Backward step - first singular value

$\mathrm{t}=5.8629 \mathrm{e}-06$

Backward step - first singular value

$\mathrm{t}=6.6447 \mathrm{e}-06$

Backward step - first singular value

$t=7.4264 \mathrm{e}-06$

Backward step - first singular value

Backward step - first singular value

Backward step - first singular value

$\mathrm{t}=9.7716 \mathrm{e}-06$

Backward step - first singular value

$$
\mathrm{t}=1.0553 \mathrm{e}-05
$$

Backward step - first singular value

$$
\mathrm{t}=1.1335 \mathrm{e}-05
$$

Backward step - first singular value

$$
\mathrm{t}=1.2117 \mathrm{e}-05
$$

Backward step - first singular value

$$
\mathrm{t}=1.2898 \mathrm{e}-05
$$

Backward step - first singular value

Backward step - first singular value

$$
\mathrm{t}=1.4462 \mathrm{e}-05
$$

Backward step - first singular value

$$
\mathrm{t}=1.5244 \mathrm{e}-05
$$

Backward step - first singular value

$\mathrm{t}=1.6025 \mathrm{e}-05$

Backward step - first singular value

Backward step - first singular value

$$
\mathrm{t}=1.7589 \mathrm{e}-05
$$

Backward step - first singular value

$$
\mathrm{t}=1.8371 \mathrm{e}-05
$$

Backward step - first singular value

$$
\mathrm{t}=1.9152 \mathrm{e}-05
$$

Backward step - first singular value

$\mathcal{E}(t)=\frac{1}{2}(A \sigma, \sigma)+\frac{1}{2}(\rho v, v)$

$t=1.2898 \mathrm{e}-05$

$$
\mathcal{I}(\mathbf{y})=\int_{0}^{T} \mathcal{E}(\mathbf{y}, t) \mathrm{d} t, \quad \mathbf{y} \in \Omega
$$

Backward step - second singular value

Backward step - second singular value

$\mathrm{t}=1.5635 \mathrm{e}-06$

Backward step - second singular value

Backward step - second singular value

$\mathrm{t}=3.1269 \mathrm{e}-06$

Backward step - second singular value

$\mathrm{t}=3.9086 \mathrm{e}-06$

Backward step - second singular value

$\mathrm{t}=4.6904 \mathrm{e}-06$

Backward step - second singular value

$$
\mathrm{t}=5.4721 \mathrm{e}-06
$$

Backward step - second singular value

$\mathrm{t}=6.2538 \mathrm{e}-06$

Backward step - second singular value

$\mathrm{t}=7.0355 \mathrm{e}-06$

Backward step - second singular value

$$
\mathrm{t}=7.8173 \mathrm{e}-06
$$

Backward step - second singular value

Backward step - second singular value

Backward step - second singular value

Backward step - second singular value

$$
\mathrm{t}=1.0944 \mathrm{e}-05
$$

Backward step - second singular value

$$
\mathrm{t}=1.1726 \mathrm{e}-05
$$

Backward step - second singular value

$$
\mathrm{t}=1.2508 \mathrm{e}-05
$$

Backward step - second singular value

Backward step - second singular value

Backward step - second singular value

$$
\mathrm{t}=1.4853 \mathrm{e}-05
$$

Backward step - second singular value

$\mathrm{t}=1.5635 \mathrm{e}-05$

Backward step - second singular value

$\mathrm{t}=1.6416 \mathrm{e}-05$

Backward step - second singular value

$$
\mathrm{t}=1.7198 \mathrm{e}-05
$$

Backward step - second singular value

Backward step - second singular value

$$
\mathrm{t}=1.8761 \mathrm{e}-05
$$

Backward step - second singular value

$$
\mathrm{t}=1.9543 \mathrm{e}-05
$$

$\mathcal{E}(t)=\frac{1}{2}(A \sigma, \sigma)+\frac{1}{2}(\rho v, v)$

$t=1.8761 e-05$

$$
\mathcal{I}(\mathbf{y})=\int_{0}^{T} \mathcal{E}(\mathbf{y}, t) \mathrm{d} t, \quad \mathbf{y} \in \Omega
$$

Backward step - third singular value

Backward step - third singular value

$\mathrm{t}=1.1726 \mathrm{e}-06$

Backward step - third singular value

$$
\mathrm{t}=1.9543 \mathrm{e}-06
$$

Backward step - third singular value

Backward step - third singular value

$\mathrm{t}=3.5178 \mathrm{e}-06$

Backward step - third singular value

$\mathrm{t}=4.2995 \mathrm{e}-06$

Backward step - third singular value

$\mathrm{t}=5.0812 \mathrm{e}-06$

Backward step - third singular value

$\mathrm{t}=5.8629 \mathrm{e}-06$

Backward step - third singular value

Backward step - third singular value

$\mathrm{t}=7.4264 \mathrm{e}-06$

Backward step - third singular value

Backward step - third singular value

Backward step - third singular value

$\mathrm{t}=9.7716 \mathrm{e}-06$

Backward step - third singular value

$\mathrm{t}=1.0553 \mathrm{e}-05$

Backward step - third singular value

$$
\mathrm{t}=1.1335 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.2117 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.2898 \mathrm{e}-05
$$

Backward step - third singular value

Backward step - third singular value

Backward step - third singular value

$$
\mathrm{t}=1.5244 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.6025 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.6807 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.7589 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.8371 \mathrm{e}-05
$$

Backward step - third singular value

$$
\mathrm{t}=1.9152 \mathrm{e}-05
$$

Backward step - third singular value

$\mathcal{E}(t)=\frac{1}{2}(A \sigma, \sigma)+\frac{1}{2}(\rho v, v)$

$$
\mathcal{I}(\mathbf{y})=\int_{0}^{T} \mathcal{E}(\mathbf{y}, t) \mathrm{d} t, \quad \mathbf{y} \in \Omega
$$

$t=1.2898 \mathrm{e}-05$

[^0]: 3. L Borcea, G Papanicolaou, C Tsogka and J Berryman, (2002) Imaging and time reversal in random media
 4. D Givoli, (2014) Time Reversal as a Computational Tool in Acoustics and Elastodynamics
